Activation of protein kinase A and C prevents recovery from persistent depolarization produced by oxygen and glucose deprivation in rat hippocampal neurons.
نویسندگان
چکیده
Intracellular recordings were made from rat hippocampal CA1 neurons in rat brain slice preparations to investigate whether cAMP-dependent protein kinase (PKA) and calcium/phospholipid-dependent protein kinase C (PKC) contribute to the membrane dysfunction induced by oxygen and glucose deprivation (OGD). Superfusion of oxygen- and glucose-deprived medium produced a rapid depolarization ∼5 min after the onset of the superfusion. When oxygen and glucose were reintroduced immediately after the rapid depolarization, the membrane depolarized further (persistent depolarization) and reached 0 mV after 5 min from the reintroduction. The pretreatment of the slice preparation with PKA inhibitors, H-89 and Rp-cAMPS, and an adenylate cyclase inhibitor, SQ 22, 536, significantly restored the membrane toward the preexposure potential level after the reintroduction of oxygen and glucose in a concentration-dependent manner. On the other hand, a phospholipase C inhibitor, U73122, a PKC inhibitor, GF109203X, and a nonselective protein kinase inhibitor, staurosporine, also significantly restored the membrane after the reintroduction. Moreover, an inositol-1,4,5-triphosphate receptor antagonist, 2-aminoethyl diphenylborinate, and calmodulin inhibitors, trifluoperazine and W-7, significantly restored the membrane after the reintroduction, while neither an α-subunit-selective antagonist for stimulatory G protein, NF449, a Ca(2+)/calmodulin-dependent kinase II inhibitor, KN-62, nor a myosin light chain kinase inhibitor, ML-7, significantly restored the membrane after the reintroduction. These results suggest that the activation of PKA and/or PKC prevents the recovery from the persistent depolarization produced by OGD. The Ca(2+)/calmodulin-stimulated adenylate cyclase may contribute to the activation of PKA.
منابع مشابه
Activation of protein kinase A and C prevents the recovery from persistent depolarization produced by oxygen and glucose deprivation in rat hippocampal neurons
متن کامل
Arachidonic acid metabolites contribute to the irreversible depolarization induced by in vitro ischemia.
Intracellular recordings were made from hippocampal CA1 neurons in rat slice preparations. Superfusion with oxygen- and glucose-deprived medium (in vitro ischemia) produced a rapid depolarization approximately 5 min after the onset of the superfusion. Even when oxygen and glucose were reintroduced immediately after rapid depolarization, the membrane depolarized further (persistent depolarizatio...
متن کاملThe Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment
Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...
متن کاملThe Time Course of JNK and P38 Activation in Cerebellar Granule Neurons following Glucose Deprivation and BDNF Treatment
Low glucose condition induces neuronal cell-death via intracellular mechanisms including mitogen-activated protein kinases (MAPK) signaling pathways. It has been shown that low glucose medium decreases neuronal survival in cerebellar granule neurons (CGNs). In this study, we have examined the activation of JNK, p38kinase and ERK1/2 pathways in low glucose medium in CGNs. The CGNs were prepared ...
متن کاملThe Effect of Noscapine on Oxygen-Glucose Deprivation on Primary Murine Cortical Neurons in High Glucose Condition
AbstractIn the present work we set out to investigate the neuroprotective effects of noscapine (0.5-2 µM) in presence of D-glucose on primary murine foetal cortical neurons after oxygen–glucose deprivation/24 hrs recovery. Cell viability, nitric oxide production and intracellular calcium ([ca2+]i) levels were evaluated by MTT assay, the modified Griess method and Fura-2 respectively. 25 and 100...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 107 9 شماره
صفحات -
تاریخ انتشار 2012